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Optimal Frequency-Domain System Realization
with Weighting

Jer-Nan Juang *and Peiman G. Maghami f
NASA Langley Research Center
Hampton, VA 23681

Abstract

Several approaches are presented to identify an experimental system model
directly from frequency response data. The formulation uses a matrix-fraction
description as the model structure. Frequency weighting such as exponential
weighting is introduced to solve a weighted least-squares problem to obtain
the coefficient matrices for the matrix-fraction description. A multi-variable
state-space model can then be formed using the coefficient matrices of the
matrix-fraction description. Three diffcrent approaches are introduced to fine-
tune the model using nonlinear programming methods to minimize the desired
cost function. The first method uses an eigenvalue assignment technique to
reassign a subset of system poles to improve the identified model. The second
method deals with the model in the real Schur or modal form, reassigns a
subset of system poles, and adjusts the columns (rows) of the input (output)
influence matrix using a nonlinear optimizer. The third method also optimizes
a subset of poles, but the input and output influence matrices are refined at
every optimization step through least-squares procedures.

1 Introduction

One major objective of system identification is to provide mathematical models for

dynamics and control analysis and designs. However, models of systems can have
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various forms, such as transfer functions, differential or difference equations, and
state-space equations. A frequency-domain state-space identification method [1 - 5]
provides a state-space model of a linear system from frequency response data.

The method called the State-Space Frequency Domain (SSFD) identification al-
gorithm (2] can estimate Markov parameters (pulse response) from the frequency
response function (FRF) without window distortion when an arbitrary frequency
weighting is used to shape the estimation error. The method uses a rational matrix
fraction description (the ratio of a matrix polynomial and a monic scalar polynomial
denominator) to curve-fit the frequency data and compute the Markov parameters
from FRF. The curve-fitting problem must be solved either by nonlinear optimization
techniques or by linear approximate algorithms with several iterations. To obtain the
state-space models from the Markov parameters, the Eigensystem Realization Algo-
rithm (ERA) or its variant ERA/DC is used [5].

Frequency domain methods presented in Refs. (3, 4, 5] start with identifying a
left matrix-fraction description (LMFD) of the transfer function matrix. The ad-
vantage of using the LMFD, as an intermediate model between the data and the
desired final state-space model, is that from frequency response data to the LMFD
is a linear least-squares problem, which is easy to solve. This method works quite
well when the frequency response data are fairly accurate; however, it might yield
unstable, erroneous models if the data contains too much distortion and/or crror.
Data distortion in the frequency domain is caused by a number of factors; limited
sampling frequency, filters to remove noise, and lack of periodicity. This data dis-
tortion often cause unstable modes to be present in the identified system model. Ap
improved method was introduced in Ref. [6] to deal with the problem when data
distortion is present. The idea is to stabilize or remove the unstable modes before
expanding the matrix-fraction description (MF D) into the Markov parameters (pulse
responses). This approach avoids introducing unstable modes while still maintaining
the frequency response close to the data.

In this paper, exponential frequency weighting [2,7] is used to solve a weighted
least-squares problem for the LMFD coefficient matrices. A multi-variable state-spacc



model is then realized from the LMFD cocfficient matrices. To improve the identified
model, nonlinear programming methods (8] are used to fine-tune the model param-
eters. There are three different formulations introduced in this paper for parameter
optimization. In all threc formulations, the objective function is defined as the error
between the actual FRF and the synthesized FRF using the identified spacc-space
model. The first formulation uscs a general system realization, and utilizes nonlincar
programming along with an eigenvalue assignment [9 — 11] technique to optimize a
subset of system poles. The second formulation deals with system realizations in
the teal Schur or modal forms, and uses a subset of system poles, as well as some
coefficients to adjust the columns (rows) of the input (output) influence matrix for
parameter optimization. The third formulation is similar to the second, but the input
and output influence matrices are computed at cvery optimization step through least-
squares procedures. Experimental data from a NASA testbed with fifteen inputs and
fourteen outputs arc used with a total of two hundreds and ten transfer functions to

demonstrate the concepts proposed in this paper.

2 Weighted Least-Squares Method

Given the system frequency response function G (zx) at the frequency point 2z, con-

sider the left matrix-fraction

Gl2k) = o' (2k) B(2) (1)

where
afzx) = Im + a2yt + -+ 0z, (2)
B(zk) = Bo + Bzt 4+ Bpz” (3)

are matrix polynomials with I, being an identity matrix of order m. Every «; is
an m x m real square matrix and each §; is an m x r real rectangular matrix. The
factorization in Eq. (1) is not unique. For convenience and simplicity, one can choose

the orders of both polynomials to be equal to p.



Pre-multiplying Eq. (1) by a(zx) produces

@(2e)G(2x) = B(z) (4)
which can be rearranged into
Glz) = -Gz — -+ — 0pGlak) 2 ?
+ 8o+ Brzgt + o+ Boz (5)
or
G(z) = OG; (6)

where the matrix ©, of dimension m x [p(m+7)+7], and the matrix Gk, of dimension
[p(m +7) + 7] x 7, are defined as

O=[ar - a b B B - B, ] (7)
[ Ga)zg" ]
G(2k) 2 *
Gk = I, (8)
Irz,c_1
Lz P

Here, I, is an r x 7 identity matrix. With G(z) and 2" known, Eq. (5) or (6) is a
linear equation. Because G(2) is known at z, = e =% (k=1,...,¢), therc arc ¢
equations available.

The parameter matrix © in Eq. (6) is a real matrix whereas G(z) and G are
both complex matrices. Thus Eq. (6) is a complex matrix equation with a total of ¢

complex equations . Let us define

Gk = [Real(G(zi)) Imag(G(z))] and Gy = [Real(G) Imag(Gy)] (9)



Equation (6) may be rewritten as
Gr = 66 (10)

Equation (10) is a real matrix equation consisting of 2¢ linear equations for computing
the paramecter matrix ©. The matrix G at the frequency point k is an m x 2r matrix,

whercas Gy is a [p(m + 7) + r] X 2r matrix.

2.1 Recursive Formulation

To solve Eq. (10), let us first define a weighted cost function to be minimized as
k
J(©,k) = 3w || ©(k)Gei — Gei I3 - (11)
i=1

where 0 < w < 1 is a forgetting factor weighting the frequency data. The data at
the lowest frequency point is given unit weight, but data that is k frequency points
higher is weighted by w* The method is commonly called exponential forgetting.
The cost function defined in Eq. (11) is motivated by the fact that accelerometers are
commonly used as the measurement device in structural testing. The corresponding
frequency response functions have better response levels in the high frequency range.
Identifying lower frequency information in the presence of measurement noise becomes
a problem. One way to solve this problem is to weight more the lower frequency region.
On the other hand, displacement sensors have better response capability for the low
frequency region. For this case, the forgetting factor may be switched to weight the
high frequency region more than the lower frequency region. The form of Eq. (11) is
unchanged except for the index £ —i is replaced by .

Using recursive least squares, the solution that minimizes Eq. (11) is
O(k) = ¢(k)P(k) (12)
where

k
p(k) = Zwk-iée—iéﬁi (13)
i=1

-1

P(k) = {‘ﬁ w""‘ée-ié{_i} (14)
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The matrix P(k) is the inverse of the frequency data correlation matrix weighted by
the forgetting factor w. Note that the matrix P(k) is positive definite. From the
definition of P(k), application of the matrix inversion lemma yields

P(k) = [ﬁw’“*@—iéﬁiJ—

=1

k—1 -
= [w (Z w"“l‘ige_igf_,-> + gl—kgﬁkJ
i=1

1

= [wP7(k—1)+GuGL,]

1 1 ~
where
Kk =1) = [wly + G Pk — 1)Go_)'GT  P(k — 1) (16)
Similarly, the quantity #(k + 1) at frequency point k + 1 can be written as
k
¢k) = 3 WG, 6T,
i=1
= wé(k - 1)+ Go i GT, (17)
Substituting Egs. (15) and (16) into Eq. (12) yield the parameter (k)
O(k) = ¢(k)P(k)
- . 1 1 5
= [wotk - 1)+ 6,67, [EP(k = 1) = = P(k ~ 1)GpuK(k - 1)}
= Ok —1)+ Gt — Ok — 1)Gr—i] K(k — 1) (18)
where the last equality results from the following

GLe [ Ptk - 1) - = P(k ~ )Gy pK(k ~ 1)

- % {lwhe + 6T Pk~ 1)G,_y) - 6T, P(k — DG Kk - 1)
= K(k—1) 9



The parameter ©(k) which minimizes the cost function is given recursively by
G[_k = [RCal(G(Zg_k)) Imag(G’(Zg_k))]

[ G(ze—i) 7 |

G(Zl—k)ze_—pk

j2"!l_k—1!
G = I, ;o 2k — € ¢
-1
Irzey
-p
Iz

Gex = [Real(Gos) Imag(Ge-)]
Kk—1) = [wly +GF Pk — 1G] "Gl Pk —1)
Gex = O(k—1)Gs
P(k) = %P(k —1)— %P(k — )G Kk —1)
O(k) = Ok~ 1)+ [Ger — Gek| K(k — 1)

At any specific frequency point &, the m x 2r FRF matrix Go_y is given, where 7 is the
number of inputs, m is the number of outputs, and ¢ is the total number of frequency
points to be used for the identification process. The [p(r+ m)+r] X r complex matrix
G, is then computed where p is an integer large enough to satisfy the constraint
pm > n (the system order). The 2r x [p(r +m) + r] matrix K(k — 1) is the update
gain determined by the matrix P(k — 1) of dimension [p(r +m) + 7] x [p(r +m) + T,
the matrix Go_x of dimension [p(r +m) + r] X 2r, and the scalar w. The initial values
of P(0) and 6(0) can be arbitrarily assigned. normally, P(0) and ©(0) are assigned
as dI and 0, respectively, where d is a large positive number, I is an identity matrix
dimensioned [p(r + m) 4 7] x [p(r +m) + 7], and 0 is a zero matrix dimensioned
m x [p(r +m) + 7).

In the recursive process, special care must be taken to ensure that both matrices

7



[wly, + GF Pk — 1)G,_i]~" and P(k) must be symmetric and positive definite. In
theory, inverting a positive-definite matrix results in another positive-definite matrix.
In practice, any numerical error in the matrix inversion process at any step may
accumulate large enough errors to destroy its symmetry and positive-definiteness. It
eventually leads to an unstable solution, i.e., the parameter © will not converge to a
constant value when k — ¢. Onc simple way to eliminate the inversion problem is
to take only the symmetric part of the inverted matrix at every recursion step, i.c.,
s{wley + G Pk — 1)Gr_i) ™ + ([whor + Gk P(k—1)Ge_x)™")T}. This will guarantee

that the inverted matrix is symmetric.

2.2 Batch Formulation

Recursive approaches are better suited for computations in real time, i.c., parameters
arc computed as data becomes available. Often, experimental data from a completed
test is available which allows all calculations to be performed at once. A batch version

is presented in this section. Stacking up the 2¢ equations in Eq. (10) yields

G=06g (20)
where . L ~
G = [Go Gy - Ge]
. . ~ (21)
G =[G G - G|
The cost function J shown in Eq. (11) is minimized by solving the least-squares
solution for © according to Eqgs. (12), (13), (14) with k = e,

0 = GGTIGGT]! (22)
where
g~w = [ g~0 wgl ’wegt ] (23)
'The subscript w associated with G, signifies the forgetting factor w inserted into G
with an appropriate power at each frequency point.

The weighting w? for the highest frequency at the frequency point ¢ can be quite
small depending on the length ¢ of the data and the choice of the forgetting factor w.

8



Fox example, w &~ 4.3 x 107° with £ = 1000 and w = 0.99. Unless the amplitudes of
those frequencies near the highest frequency are in the order of 1075, their contribution
to the identification process may become negligible. Using accelerometers, the ratio
of the highest frequency to the lowest frequency can be as high as 10% to 10°. For
this case, the forgetting factor used in Eq. (23) is indeed a good weighting technique
to perform a better low-frequency identification.

On the other hand, one may prefer to have freedom of choosing a weighting factor.

A slight modification of Eq. (23) will provide such freedom, 1.c.,
g~w = [ g~0 w1§1 we‘je ] (24)

The quantities wi, wy, ..., W, can be all independent. They may be randomly or
specifically chosen. Some obvious choices include
1 1
__—10(1-k)/¢ _ I A
W =€ , Wg =T, Wk = 73} k=1,2,...,¢
k LR kT3
For the casc where the low frequency resolution is better than the high frequency
resolution, the weighting must be reversed.
Substituting Eq. (24) in Eq. (22) and solving for the parameter © that minimizes

the following cost function,

yields results similar to Eq. (11) except for the weighting factor.
In the next section, optimization-based approaches to further improve the least-

square solution are discussed.

3 Nonlinear Optimization

Another approach to enhance the identified model is to use nonlinear programming
to tune the model parameters obtained from the solution to Eq. (10). Once the

solution, represented by the parameter matrix ©, is computed using Eq. (18) or



Eq. (22), a state-space realization is determined. The state-space realization can be
in any canonical form such as Schur form, modal form, Jordan form, observable form,
etc. There are three different formulations considered in this paper for parameter
optimization. The first formulation deals with a general system realization, and
utilizes nonlinear programming along with an eigenvalue assignment technique to
optimize a subset of system poles to improve the agreement between the measured
transfer function and the identified model. The second formulation deals with system
realizations in the real Schur or modal forms, and uses a subset of system poles, as well
as some newly defined parameters to adjust the columns (rows) of the input (output)
influence matrix, as optimization parameters. The third formulation is similar to the
sccond, but the input and output influence matrices are not directly adjusted by the
optimizer, rather, they are computed at every optimization step through least-squares
procedures. In the first formulation, all system poles are reassigned simultaneously
to the desired values given by the optimizer, via an eigenvalue assignment technique.
In the second and third approaches , each pole is individually reassigned by the

optimizer.

3.1 Parameter optimization: Eigenvalue Assignment

In this formulation, a subset of system poles are used as optimization parameters
to minimize a cost function, which measures the difference between the experimen-
tal transfer function and the identified transfer function over frequency range of in-
terest. Of course, the direct approach would Be to use the elements of the state
matrix directly, with equality constraints to reassign the poles. However, this ap-
proach is computationally expensive since it requires too many design parameters.
Let (Ao, B, C, D) Trepresent an initial realization for the identified system. As men-
tioned carlier, to determine the changes in the state matrix, Ay, which reflects the new
pole locations (as defined by the optimization), an eigenvalue assignment technique is
employed. Specifically, the eigenvalue assignment technique discussed in Ref. [10] is
used, which is a sequential algorithm well-suited for partial assignment of eigenvalues

in large-order systems.
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Assume that the optimizer requires a subset of system poles to be reassigned to
As. Now, consider a system (Ao, B), where B is an n x 7 random matrix representing
an arbitrary input influence matrix. The matrix B can have as many columns one
would like, however, a rcasonable choice would be mar (m, 7). The change in the state
matrix that would reassign the poles to Aq is given by the gain matrix F' such that the
eigenvalues of Ag— BF arc assigned to A4. Since the matrix B has typically more than
one column, the gain matrix F' is not unique, i.e., therc is freedom beyond eigenvalue
assignment. This freedom 1is used to minimize the norm of the gain matrix, and
hence, the effective changes in the statc matrix. The reader is referred to Ref. [10] for
a detailed description of the eigenvalue assignment algorithm. Once the gain matrix
F is computed, the new system realization is given by (Ao — BF,B,C, D), ie.,
G(z) = Clzkl, — Ao+ BF)'B+ D (26)
In the next section, an optimization problem 1s posed for this approach.

3.1.1 Absolute Error Cost Function

Using a measure of the absolute error as the cost function, the optimization problem
for system identification enhancement is defined as follows:
minimize J:

J =1|G(2x) = G(z)IF (27)

over

As

subject to
|Xs] <1

Here, ), represents a subset of the poles of the identified system @(zk) which
are used as design parameters, and | |p denotes the Frobenius norm. The constraint
on the modulus of A, guarantees the stability of the identified system, and can be

omitted if stability is not of concern. The computational procedure is as follows:
1. Compute new pole locations, A, using optimizer.

11



2. Determine the new state matrix, with eigenvalues at As, using the sequential
eigenvalue assignment technique described in Ref. [10].

3. Update the identified transfer function matrix G (2x) from Eq. (26), and compute
the cost function J from Eq. (27).

The number of poles that can be used as design parameters in the optimization is
arbitrary. One can use all the poles in the system, or Just a few, for example, the real
poles of the system. If one starts the optimization with a system realization from the
least-squares solution of Eq. (13), then it is very likely that the complex poles of the
identified system, representing resonant peaks in the frequency responsc plots, match
the experimental results well, and hence need not be manipulated any further. In
such a case, real poles of the system and unstable poles, real or complex, are the best
candidates for design optimization. However, one could conceivably use the modulus
of all complex poles, which determine the damping associated with cach mode, as
design parameters as well.

One of the problems with nonlinear programming is the tendency of the solution to
converge to a local minimum. The problem becomes more aggravated as the number
of design parameters increases. One way to deal with this problem is to restart the
optimization from another set of design points in the neighborhood of the last optimal
design. Another way of avoiding this problem is to introduce an additional constraint
requiring that the cost function be less than a desired value, ie.,

J< Jy (28)

This constraint would move many of the local minima to the infeasible region, thereby
avoiding them. An additional technique for dealing with local minima, which is more
specific to the optimization problem that is being solved, is to restart the optimization
of Eq. (27) with a new fictitious input influence matrix. Let B represent the first
input influence matrix, then choose the second influence matrix B, randomly from

the null space of B, i.e.,
By = Ny R, (29)

12



where NlT?x B, = 0, and R, is a random matrix of appropriate dimensions. The transfer

function of the system is then computed as
G’(Zk) = C(ZkIn - Al + BQFQ)—IB + D (30)

with
A1 - A[) - BIFI

Now, the optimization of Eq. (27) is restarted with B, as the input influence matrix.
This process can be continued until either an acceptable cost function is achieved
or the computational burden of optimization outweighs any reductions in the cost
function.

The cost function in Eq. (27), which is the Frobenius norm of the error in the
transfer functions (experimental and identified), is dominated by the peaks (reso-
nants) of the transfer functions. Hence, optimization with Eq. (27) works well in
reducing the errors at or around those peaks, or wherever the transfer function mag-
nitude is significant, but it may not do much in reducing the ecrrors elsewhere, e.g.,
zeros. In fact, the errors around the valleys might become worst. An approach to

deal with this problem is presented next.

3.1.2 Relative Error Cost Function

A more equitable trade between the errors for peaks and valleys can be obtained by
considering a complementary optimization problem, wherein a norm of the relative
error is optimized instead of the absolute error given in Eq. (27). The optimization
problem is posed as

manimize Jo:

Jo = |[G(zx) — G(zk)]-/G(26)|F (31)
As
subject to
J < Jy

13



As] < 1

Here, J is the Frobenius norm of the absolute error given by Eq. (27) and ./”
denotes clement by element division. The upper bound limit J; can be any desired
value, but might be sct at the optimal value of J, using a previously computed value
from Eq. (27), or might be set at the value of J from an initial least-squares solution.
Similarly, the initial values of the design parameters may be set to previously obtained
optimal values from the optimization problem in Eq. (27), or may be set to the values
obtained from a least-squares solution.

The second nonlinear programming approach for least-squares solution improve-

ment is described next.

3.2 Parameter optimization: direct approach

A subset of system poles, as well as some additional coefficients to adjust the columns
(rows) of the input (output) influence matrix, is used as optimization paramecters.
The optimizer adjusts these parameters to minimize the difference between the ex-
perimental transfer function and the identified transfer function over frequency range
of interest. In this approach, the identified state matrix A is first transformed to
a real Schur canonical form or modal form. The system poles, which reside on the
diagonal elements or 2 x 2 block diagonal partitions of the state matrix, are directly
changed via optimization. The additional design parameters include coefficients for
a set of basis vectors, which affect the input (output) influence matrix. To minimize
the number of optimization parameters, the smaller of the input or output influence
matrices is chosen for parameterization. Assume that the input influence matrix is
the smaller of the two, i.c., there arc more outputs than inputs, and let (4, By, C, D)
represent an initial realization for the identified system. Then, parameterize the input

influence matrix B as
B = ByS + Ng,R (32)

where the matrix Np, is an n x ¢ matrix whose column span the null space of the
matrix By, that is
NE By =0

14



and S and R are 7 x r and g x r coefficient matrices, respectively. An optimiza-
tion problem, using an absolute error cost function, is discussed next using these

parameters.

3.2.1 Absolute Error Cost Function: Direct Approach

The optimization problem is similar to the previous formulation derived for the eigen-
value assignment technique, and is summarized as
minimize J3:

Js = ||G(zx) — G(z)]|r (33)

over

blkdiag(A), S, R

subject to
| A(blkdiag(A)| < 1

~

Here, G(zx) represents the system realization given by

G(zk) = Clzxln — A)T'B+ D (34)
The term blkdiag( ) denotes a subset of the 2 X 2 block diagonal of ( ). The constraint
on the modulus of A(blkdiag(A)) guarantees the stability of the identified system, and
can be omitted if stability is not of concern. The number of poles (cigenvalues), that
are used as design parameters, is specified the designer. One can use all the poles in
the system, or just a few, for example, the real poles of the system. In real Schur
form or modal form, the real poles (eigenvalues) are on the diagonal, while the pairs
of complex conjugate poles (cigenvalues) reside in the 2 X 2 block diagonals, in the

following form
[ real(X) imag()\i)}
A= [—imag()\i) real(\;) (35)

where the real( ) and imag( ) denote the real and imaginary parts, respectively. Care
must be taken during parameterization to ensure those elements of the 2 x 2 block
diagonals are parameterized properly so that complex conjugate pair remains intact

throughout the optimization process.
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In the next section, a complementary optimization problem is described using a

relative crror cost function.

3.2.2 Relative Error Cost Function: Direct Approach

A complementary optimization problem, wherein a norm of the relative error is opti-
mized, may be used in order to provide a more equitable trade between errors in the

peak and valley regions of the transfer function matrix. This optimization is defined

Jo = [[G(2) — G(z)]./G(z)| | (36)
blkdiag(A), S, R
subject to

J3 < Js,
|A(blkdiag(A)| < 1

Here, J; is the Frobenius norm of the absolute error given by Eq. (33), J3, can be any
desired value, but it is often set to & previously computed value for J3 in Eq. (33),
or the value of J from in initial least-squares solution. Similarly, the initial values
of the design parameters may be set to the previously computed optimal values for
the optimization problem of Eq. (33), or may be set to the values obtained from a
least-squares solution.

The third nonlinear programming approach for least-squares solution improvement
is described next.

3.3 Parameter optimization: Least-Squares

This method starts with selecting a subset of system poles as optimization parameters
to minimize the error between the experimental and the identified transfer functions
over frequency range of interest. The optimizer reassigns the system poles, which
reside on the diagonal elements or 2x2 block diagonal partitions of the state matrix.

16



At each optimization step, corrections are made to the B, C, and D matrices through
two least-squares solutions.

similar to the previous two nonlinear programming approaches, two optimization
problems are presented in the next two sections, one using an absolute error cost

function and the other using a relative error cost function.

3.3.1 Absolute Error Cost Function: Least-Squares

let (A, By, Co, Do) represent an initial realization for the identificd system, and pa-

rameterize the input and output influence matrices as follows,

S —

B = ByS, + N, R = [ Bo NB](Ri> = BQs - (37)
C. _

C = SoCo+ RoNe, = (S Re) [ A ] = Q.C (38)

where the columns of Np, represent a set of basis vectors in the null space of By, the
rows of Ng, represent a set of basis vectors in the null space of Cp, and @, defined
in terms of Sg and Rp, and Qc¢, defined in terms of Sc and Rc, arc the appropriate
coefficient matrices. These coefficients are determined, at each optimization step, by
solving least-squares-based corrections of the absolute crror norm. The optimization
problem is given as
minimize Js:

Js = |1G(z) — G(ze)l|r (39)
over

blkdiag(A)

subject to
|A(blkdiag(A))| < 1

The complex matrix @(zk) represents a system realization given by
@(zk) = C(Zkln — A)_IB + D (40)

The constraint on the modulus of A(blkdiag(A)) guarantees the stability of the iden-

tified system, and can be omitted if stability is not of concern. At each optimization

17



step, as a new state matrix A is defined, corrections are performed to the B and D
matrices via a least-squares solution, followed by corrections to the C and D matrices.
These solutions are defined next.

First, let G(2x) = G(z) — D, and repartition the ng x (m x r) transfer function
matrix, G(2;), columnwise, such that each column of the repartitioned (ng x m)xr
matrix, G, is associated with an input.

Define 5(4) = Co(zxI, — A)™1B, repartition _é(zk) similar to G, to obtain _A—col,

and define the absolute error function as
€= Ecol - ECOlQB (41)

Now, solve for Qp, in a least-squares sense, to obtain

-~

T =~ a7 —
QB = (GcolGCOl) GcolGCOl (42)
Once, Qp is computed, then D is computed as
D = u(G(zx) ~ Co(2nl, — A)"'B) (43)

where () denotes the mean over frequency points.

To compute Qc, first define Gz) = G(zx) — D, and repartition the ng X (m X 1)
transfer function matrix, G(zx), rowwise, such that cach row of the repartitioned m x
(na X 7) matrix, G,,,, is associated with an output. Define 5(zk) = C(zlI, - A)7iB,

repartition é(zk) similar to G,,,, to obtain row; and define the error function as
€= 67‘011) - Qcarow (44)
Now, solve for Q, in a least-squares sense, to obtain
— =T =~ T ~1
QC = GTOWGraw(GT‘OWGrow) (45)
Once, Q¢ is computed, then D is recomputed as

D = p (G(z) ~ Clzl, — A)7'B) (46)

The number of poles (eigenvalues) that can be used as design parameters is somewhat
arbitrary. One may use all the poles in the system, or just a few, for example, the

real poles of the system.
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3.3.2 Relative Error Cost Function: Least-Squares

Similar to the previous cases, the cost function is written in terms of a norm of the
relative error to provide a more equitable trade between errors in the peak and valley
regions of the transfer function matrix. This optimization problem is defined as:

minimize Jg:

Js = |[[G(z) — C(2)]./G(ax)l|r (47)
over
blkdiag(A)
subject to
Js < Js,

I\(blkdiag(A)] < 1

Here, J; is the Frobenius norm of the absolute error given by Eq. (39), Js, can be any
desired value, but it is often set to a previously computed value for J; in Eq. (39),
or the value of J from in initial least-squares solution. Similarly, the initial values
of the design parameters may be set to the previously computed optimal values for
the optimization problem of Eq. (39), or may be set to t he values obtained from a
least-squares solution. The transfer function matrix G(zy) is the same as that used
for the pervious optimization problem, and is provided by Eq. (40), and the input
and output influence matrices B and C are expanded following Egs. (37)-(38).

Now, there are two possible approaches for performing the least-squares-based
corrections to the B, C, and D matrices. The first approach is to use the proce-
dure outlined earlier for computing the coefficient matrices Qp (Eq. (42)) and Qc
(Eq. (45)), exactly. That procedure is based on a least-squares correction of the abso-
lute error norm. The second approach is to compute these coefficient matrices from a
least-squares correction of the relative error norm. However, the least-squares prob-
lems, whose solutions yield the coefficient vectors Qp and Q¢, are somewhat different
because they use a relative error norm instead of an absolute error norm. Without
going into details of this alternative, the equations arc fairly similar to those obtained

for the absolute error case, with three exceptions. First, instead of two lcast-squares
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problems, one for input influence matrix correction and one for output influence ma-
trix correction, there would be r least-squares problems for the input influence matrix
correction, once for each column of the B matrix, and m least-squares problems for
the output influence matrix correction, one for cach row of the C matrix. The second
cxception is that one column (row) of the matrix Gool (éraw), at a time, is used for
each least-squares problem, with all its elements replaced by ones. The last exception

is that the columns (rows) of G, (Gyow) are normalized by the elements of Ea,,(é,.ow).

4 Applications

This section describes the application of the proposed techniques to the system iden-
tification for the PARTI wind-tunnel model [12], a laboratory test structure at NASA
Langley. The model is a five-foot long, high aspect ratio wing designed to flutter at
low speeds to simplify aerodynamic analyses and wind-tunnel testing. The fully as-
sembled semi-span model is shown in F ig. 1. The model has a total of 72 actuators
bonded to both sides of the plate. Each actuator contains two stacks of two 0.01
inch piezoelectric patches. The 72 actuators are hardwired to actuate in 15 different
groups. The 15 groupings were chosen such that each group primarily affects one of
the first three natural modes. Each group can be considered as one input, because all
the actuators in the group use the same signal. The piezoelectric patches were only
used for actuation; ten strain gages and four accelerometers were used as sensors. As

a result, there are a total of 15 inputs and 14 outputs.

4.1 Weighted Least-Squares Solution

In the first application, the transfer function from input No. 1 to all outputs is
considered for identification. With signals from 14 sensor outputs (m = 14), input
No. 1 (r = 1), and 10th order polynomials (p = 10) used in the matrix-fraction
expansion (sce Egs. (1)-(3)), a weighted least-squares solution was first obtained

from Eq. (22), using an exponential weighting function, given as



Here, k = 0 refers to the zcro frequency component of the FRF often known as
the direct current (DC) term in eclectrical engineering, and w was chosen at 0.98.
By adjusting the value of w one may emphasize the low frequencies or the higher
frequencies. Values of w less than 1 would emphasize the lower end of the frequency
spectrum. Here, w was set to 0.98, to emphasize the range of frequency from 0 to
25 Hz. The weighted least-squares solution resulted in an identified model of order
140, which included 4 unstable poles. However, since the actual testbed is stable, it
is desired to obtain a stable identified model. Truncating the unstable states yielded
a 136-order state-space realization of the system. Magnitude and phase FRF plots
for outputs No. 7 and 10 are shown in Figs. 2 and 3, respectively.

Comparison of the plots indicates an excellent agreement between the experimen-
tal FRF (solid line) and the identified FRF (dashed line), particularly around the
peaks of the FRF or where the gain values are significant. However, discrepancies
can be observed around some of the zeros as well as where the gain values are small.
This should be expected as the least-squares problem is dominated by the peaks and
large gain values. Further inspection of these plots also indicates that the agreement
between the experimental and identified results is better in the 0-25 Hz range. The
Frobenius norm of the error between the experimental and identified transfer func-
tions was computed at 90.128, the majority of which is due to the differences between
two FRFs at DC frequency. In fact, since the DC gain values arc quite large, par-
ticularly in some output channels, they tend to dominate the rest of the FRF in a
least-squares solution. Kecp in mind that the DC gain values may not be accurate
due to the use of accelerometers and their insensitivity at very low frequencies, drift
problems that hampers accurate measurements, and lack of sufficient data. There-
fore, in this case, it is reasonable to de-emphasize the DC values by assigning a zcro
value to the corresponding weighting function, such that the DC weight is set to
zero. The Bode plots, using the modified weighting function, are shown in Figs. 2 and
3 as dashed-dotted lines. These figures indicate moderate improvements in various
frequency ranges. The Frobenius norm of the error between the experimental and

identified transfer functions was computed at 90.134, a very minor change from the
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previous results, indicating that little in terms of minimizing the overall error is lost.
Comparing, the norm of the error for all frequency points except DC, shows that the
error went down from 0.241 to 0.223, which quantifies the better match by using the
modified weighting function.

In order to show the effectiveness of the modified exponential weighting, a polyno-
mial with p = 3 is used in the matrix-fraction description. The weighted least-squares
solution resulted in a stable identified model of order 40. Figures 4 and 5 illustrate
the stable least-squares solutions for the nominal and modified exponential weight-
ings for outputs No. 7 and 10. These figures clearly demonstrate the advantage of
modified exponential weighting for this problem. In fact, the Frobenius norm of the
error between the experimental and identified transfer functions dropped from 12.035

to 0.3021, a significant improvement.

4.2 Further Enhancements: Nonlinear Programming

To demonstrate the potential of the nonlinear programming approaches to further
enhance the least-squares solution, the direct optimization approach is applied to an
identified model for the PARTI testbed, obtained from a least-squares solution. Three
optimization problems were considered and carried out in this application. The first
optimization approach was the one posed in Eq. (33), minimizing the Frobenius norm
of the absolute error cost function for all frequency points except the DC, using as
design variables the real poles of the identified plant as well as the coefficients of the
basis vectors, S and R, from Eq. (32). The initial least-squares solution provided a
stable model of order 40, with 6 real poles. This model was transformed into modal
form to make it amenable to optimization with the direct approach. There were 26
design variables used in the optimization, the first 6 being the values of the real poles
of the system, the 7th representing the coefficient S (see Eq. (32)), and the remaining
19 representing the elements of the coefficient vector R (see Eq. (32)), corresponding
to 19 basis vectors from the null space of the matrix By. It should be noted that one
could have included the complex poles of the system as design variables too. However,

it was concluded that this may not be necessary since the dominant poles (resonances)
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of the system were captured by the least-squares solution, as observed from Figs. 4
and 5. The optimization included 7 constraints, the first six to assure the stability
of the system as the poles were reassigned, and the last constraint on the value of
the error norm to avoid convergence to undesirable local minima. The optimization
was performed using the Automated Design Synthesis (ADS) software [13]. The
interior penalty function method of ADS was used to solve the nonlinear programming
problems. In this method, the constrained optimization problem is transformed into
an unconstrained problem through creation of a objective function which is the sum of
the original objective function and an imposed penalty function (which is a function
of the constraints) [14]. The initial solution used in the optimization was that of
stable least-squares solution with modified exponential weighting. The optimization
reduced the norm of the absolute error from the initial value of 0.302 to 0.285. The
optimization was repeated once with a new input influence matrix bases. These bases
included the initial influence vector, along with a new set of 19 random basis vectors
from the null space of the matrix [By Np,]. The second optimization run reduced
the norm of the error from 0.289 to 0.249, which is fairly close to 0.223, the error
norm corresponding to the stable least-squares'solution with p = 10. This process
could have been continued further, however, it was deemed that the computational
burden would outweigh any additional reductions in the norm of the error. The Bode
plots, comparing the transfer function matrices for the experimental, nominal, and
optimal results arc provided in Figs. 6 and 7, for output No. 7 and 10, where it
is observed that the identified model, via optimization, performs well, almost at a
comparable level to that for p = 10. This is very encouraging, considering that the
optimization-based model is a 40th order model compared to 136th order model for
p = 10.

Figures 6 and 7 also indicate that there is room for improving the test and analysis
agreement around the transmission zeros and low gain regions. To accomplish this, a
second optimization problem was performed. This case used the formulation described
in Eq. (36), in which the Frobenius norm of the relative error is minimized. The initial

design used the optimal solution obtained from the first optimization problem. Similar
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to the first optimization, 26 design variables werc used in the optimization, the first
6 being the location of the real poles of the system; the 7th represents the coefficient
S (see Eq. (32)); and the remaining 19 representing the elements of the coefficient
vector R (see Eq. (32)), corresponding to 19 basis vectors from the null space of the
matrix By. In addition, 7 constraints were used, the first six to guarantee system
stability, and the last constraint to ensure that the Frobenius norm of the absolute
error remained equal to or below 0.249, the level obtained by the first optimization.
The optimization reduced the norm of the relative error from the initial value of
181.11 to 152.48. The optimization was repeated once more with a set of new input
influence matrix bases. The second optimization run reduced the norm of the error
from 152.48 to 118.34, and the optimization process was terminated. The Bode plots
for the experimental, nominal, and optimal results, for outputs No. 7 and 10, are
presented in Figs. 8 and 9. These figures illustrates a considerable improvement in
the optimal model in matching the area around the transmission zeros and low gain
regions of the transfer functions. These results demonstrate the advantages of further
enhancements to the least-squares solution.

Another optimization problem considered was the problem posed in Eq. (39) where
the Frobenius norm of the absolute error is minimized while adjusting the eigenvalues
of the state matrix, subject to stability constraints. Moreover, the optimization in-
cluded corrections to the B and D matrices, followed by corrections to the €' and D
matrices, at each functional evaluation (sec Eq. (42)-(43) and (45)-(46)). The 6 de-
sign variables used in the optimization were the values of the real poles of the system.
The optimization included 7 constraints, the first six to guarantee the stability of the
systems as the poles were reassigned, and a constraint on the value of the error norm
to avoid undcsirable local minima. The initial design used in the optimization was
was taken from a stable least-squares solution with modified exponential weighting,
Le., zero DC weighting. The optimization reduced the norm of the absolute error
from the initial value of 0.250 to 0.197, which is over 20% reduction. Plots, compar-
ing the transfer function matrices for the experimental, nominal, and optimal results
are provided in Figs. 10 and 11, for output No. 7 and 11. The identified model (via
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optimization) agrees very well with the experimental data. Also note that output 11
is now shown as opposed to 10 in the previous cases. This output sensor shows modes
around 28 and 38 Hz which are also being identified.

All the identification results obtained so far were based on the 14 transfer functions
from the first input to all 14 outputs. Now, let us consider the transfer functions from
all 15 inputs to all 14 outputs for identification. With the signals from all 14 sensor
outputs (m = 14) and all 15 inputs (r = 15), and 3rd order polynomials (p =
3) used in the matrix-fraction expansion(sec Egs. (1)-(3)), a weighted least square
solution was first obtained from Eq. (22). Similar to the previous cases, an exponential
weighting function was used, with parameter w chosen at 0.98 to emphasize the range
of low frequencies. In addition, the DC weight was set to zero. The Frobenius norm
of the error between the experimental and identified transfer functions was computed
at 246.855, the majority of which is due to a discrepancy between two FRFs at the
DC frequency, i.e., zero frequency. The Frobenius norm of the absolute error, for
all frequency points except the DC, was computed to be 1.721. For the purpose of
illustration, plots for the experimental and realized transfer functions are depicted in
Figs. 12 and 13, for outputs No. 7 and 11 with input No. 1, and in Figs. 14 and
15, for the same outputs with input No. 8. The experimental transfer functions are
shown as solid lines and the transfer functions, obtained via direct least square, as
dashed lines. These figures indicate moderate to good agrecment between the transfer
functions in low frequencies ranges, particularly, around the pcaks or high gain areas
of the transfer functions.

Now consider the least-squares optimization approach presented in Eq. (39) for
the 15 inputs and 14 output case. The initial design used in the optimization was the
stable least-squares solution with modified exponential weighting. This realization
had 14 real poles, whose locations were used as design variables in the optimization,
i.e., there were 14 design variables. The optimization included 15 constraints, the first
14 to guarantee the stability of the systems as the poles were reassigned, and the last
constraint on the value of the error norm to avoid convergence to undesirable local

minima. The optimization reduced the norm of the error from the initial value of
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1.165 to 1.090, about a 6.5% reduction. Plots, comparing for the experimental (solid
line), nominal (dashed line), and optimal transfer function (dashed-dotted line) are
provided in Figs. 12 through 15. It is observed that the identified model (obtained
via optimization) performs well, although only 3rd order polynomials was used in the
matrix fraction description to match a 15 input by 14 output transfer function. Com-
parison of Figs. 12 and 13 with Figs. 10 and 11, which correspond to the same input
and output channels, and were obtained from a single input identification problem,
reconfirms the good level of correlation obtained following the optimization-based

approach.

9 Concluding Remarks

Several techniques have been presented to identify an experimental system model
directly from frequency response data. The techniques used a matrix-fraction de-
scription (MFD) to describe the identified system. The MFD coefficients were ob-
tained from the solution of a weighted least-squares problem. Frequency weighting
concepts were introduced in order to emphasize a frequency range of interest. Three
optimization-based methods were introduced to fine-tune the experimentally realized
models. The first method uses an eigenvalue assignment technique to reassign a sub-
set of the system poles to enhance the approximation of the identified model. The
second method considers the model in the real Schur or modal form, and uses a subset
of system poles as well as additional parameters to adjust the columns (rows) of the
input (output) influence matrix in order to improve the model fit. The third method
optimizes a subset of the system poles, while the input and output influence matri-
ces arc computed at every optimization step through least-squares procedure. The
methods were applied to data from PARTI wind tunnel model, a laboratory testbed
at NASA Langley Research Center. The benefits of the optimization-based refine-
ment techniques as well as frequency weighting techniques were demonstrated. It was
shown that with optimal fine-tuning and proper choice of frequency weighting a 40th
order system realization could provide almost the same level of model fit as a full-order
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136th order model. Specifically, the third optimization method provided the largest
improvement in the fit of the experimental data, with a 20-percent smaller absolute
error norm than that obtained from the second optimization method. However, the
computational cost of performing the third optimization formulation was considerably
higher than the second optimization problem, primarily due to the large least-squares
solutions that were solved at cvery optimization step to perform corrections to the
B, C, and D matrices. The optimizations used finite difference techniques to provide
gradient information on the objective function and constraints. The numerical com-
putation of the gradients may require a large number of functional evaluation, which
would be costly in a computational sense. Alternatively, one may attempt to obtain
analytical expressions for the gradients, and perhaps second-order partial derivatives,

to improve computational efficiency and accuracy.
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Figure 1: PARTI Model
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Figure 2: Comparison of FRFs for Output No. 7 with exponential weighting and 136-
order system: experimental FRF (solid line), identified FRF (dashed line), identified

FRF with zero DC weighting (dashed-dotted line).
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Figure 3: FRF for Output No. 10 with exponential weighting and 136-order system:
experimental FRF (solid line), identified FRF (dashed line), identified FRF with zero

DC weighting (dashed-dotted line)
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Figure 4: Comparison of FRFs for Qutput No. 7 with exponential weighting and
40-order of system: experimental FRF (solid line), identified FRF (dashed line),

identified FRF with zero DC weighting (dashed-dotted line)
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Figure 5: Comparison of FRFs for Output No. 10 with exponential weighting and
40-order of system: experimental FRF (solid line), identified FRF (dashed line),
identified FRF with zero DC weighting (dashed-dotted line)
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Objective function: norm(FRF(id)-frf(ex)), Output No.7

T T T T T T

t
-

-t
(=]

—
ol
N
T
\
o

Amplitude
aI
=

-
o
i
T—r—rrrm
L

-5 i 1 ! L I 1 I 1
0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz)

[

200

100

Phase (deg)
o

-100

~N

_200 | | I
0 5 10 15 20 25 30 35 40 45 50

Frequency (Hz)

Figure 6: Comparison of FRFs for Output No. 7 with direct optimization approach
and 40-order system: experimental FRF (solid line), identified FRF (dashed line) with
zero DC weighting, enhanced FRF with absolute-error optimization (dashed-dotted

line)
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Obijective function: norm(FRF(id)frf(ex)), Output No.10
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Figurc 7: Comparison of FRF's for Qutput No. 10 with direct optimization approach
and 40-order system: experimental FRF (solid line), identified FRF (dashed line) with
zero DC weighting, enhanced FRF with absolute-error optimization (dashed-dotted

line)
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Figure 8: Comparison of FRFs for Output No. 7 with direct optimization approach
and 40-order system: experimental FRF (solid line), identified FRF (dashed line)
with zero DC weighting, enhanced FRF with relative-error optimization (dashed-

dotted line)
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Objective function: norm(FRF(id)frf(ex)), Output No.10
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Figure 9: Comparison of FRFs for Output No. 10 with direct optimization approach
and 40-order system: experimental FRF (solid line), identified FRF (dashed line)
with zero DC weighting, enhanced FRF with relative-error optimization (dashed-

dotted line)
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Objective function: norm(FRF(id)-frf(ex)), Output No.7
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Objective function: norm(FRF(id)-frf(ex)), Output No.11
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Figure 12: Comparison of FRFs for Output No. 7 and Input No. 1 with least-squares
optimization approach and 42-order system: experimental FRF (solid line), identi-
fied FRF (dashed line) with zero DC weighting, enhanced FRF with absolute-error

optimization (dashed-dotted line)
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Figure 14: Comparison of FRFs for Output No. 7 and Input No. 8 with least-squares
optimization approach and 42-order system: experimental FRF (solid line), identi-
fied FRF (dashed line) with zero DC weighting, enhanced FRF with absolute-error
optimization (dashed-dotted line)
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Figure 15: Comparison of FRFs for Output No. 11 and Input No. 8 with least-
squares optimization approach and 42-order system: experimental FRF (solid line),
identified FRF (dashed line) with zero DC weighting, enhanced FRF with absolute-
error optimization (dashed-dotted linc)
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